skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shankar, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The creation and manipulation of quantum entanglement is central to improving precision measurements. A principal method of generating entanglement for use in atom interferometry is the process of spin squeezing whereupon the states become more sensitive to SU(2) rotations. One possibility to generate this entanglement is provided by one-axis twisting (OAT), where a many-particle entangled state of one degree of freedom is generated by a non-linear Hamiltonian. We introduce a novel method which goes beyond OAT to create squeezing and entanglement across two distinct degrees of freedom. We present our work in the specific physical context of a system consisting of collective atomic energy levels and discrete collective momentum states, but also consider other possible realizations. Our system uses a nonlinear Hamiltonian to generate dynamics in SU(4), thereby creating the opportunity for dynamics not possible in typical SU(2) one-axis twisting. This leads to three axes undergoing twisting due to the two degrees of freedom and their entanglement, with the resulting potential for a more rich context of quantum entanglement. The states prepared in this system are potentially more versatile for use in multi-parameter or auxiliary measurement schemes than those prepared by standard spin squeezing. 
    more » « less
  2. null (Ed.)
    Several independent approaches exist for state estimation and control of multirotor unmanned aerial systems (UASs) that address specific and constrained operational conditions. This work presents a complete end-to-end pipeline that enables precise, aggressive and agile maneuvers for multirotor UASs under real and challenging outdoor environments. We leverage state-of-the-art optimal methods from the literature for trajectory planning and control, such that designing and executing dynamic paths is fast, robust and easy to customize for a particular application. The complete pipeline, built entirely using commercially available components, is made open-source and fully documented to facilitate adoption. We demonstrate its performance in a variety of operational settings, such as hovering at a spot under dynamic wind speeds of up to 5–6 m/s (12–15 mi/h) while staying within 12 cm of 3D error. We also characterize its capabilities in flying high-speed trajectories outdoors, and enabling fast aerial docking with a moving target with planning and interception occurring in under 8 s. 
    more » « less
  3. null (Ed.)
    Several independent approaches exist for state estimation and control of multirotor unmanned aerial systems (UASs) that address specific and constrained operational conditions. This work presents a complete end-to-end pipeline that enables precise, aggressive and agile maneuvers for multirotor UASs under real and challenging outdoor environments. We leverage state-of-the-art optimal methods from the literature for trajectory planning and control, such that designing and executing dynamic paths is fast, robust and easy to customize for a particular application. The complete pipeline, built entirely using commercially available components, is made open-source and fully documented to facilitate adoption. We demonstrate its performance in a variety of operational settings, such as hovering at a spot under dynamic wind speeds of up to 5–6 m/s (12–15 mi/h) while staying within 12 cm of 3D error. We also characterize its capabilities in flying high-speed trajectories outdoors, and enabling fast aerial docking with a moving target with planning and interception occurring in under 8 s. 
    more » « less
  4. Siciliano, B.; Laschi, C.; Khatib, O. (Ed.)
    Multirotor systems have traditionally been employed for missions that ensure minimal contact with the objects in their vicinity. However, their agile flight dynamics lets them sense, plan and react rapidly, and therefore perform highly dynamic missions. In this work, we push their operational envelope further by developing a complete framework that allows a multirotor to dock with a moving platform. Our approach builds on state-of-the-art and optimal methods for estimating and predicting the state of the moving platform, as well as for generating interception trajectories for the docking multirotor. Through a total of 25 field tests outdoors, we demonstrate the capabilities of our system in docking with a platform moving at different speeds and in various operating conditions. We also evaluate the quality of our system’s trajectory following at speeds over 2 m/s to effect docking within 10 s. 
    more » « less